

Magnetospheric modelling

R. Modolo, G.M. Chanteur, E. Dubinin

HELIOSARES meeting October 5-6th, 2009

Description of the model

■ Larmor radii of planetary ions ≥ radius of the obstacle
⇒ Kinetic description of ions is more appropriate at higher altitude

Hybrid formalism :

- Ions are described by macro-particles
- Electrons are treated as a neutralizing inertialess fluid
- Maxwell's equations reduce to divB=0, Ampere's and Faraday's equations

Description of the model (2)

- Specific features for planetary environments
- ➤ Weigthed macro-particles ⇒ description of a large range of density (10⁻³ →10⁴ cm⁻³)
- Many ionic species are represented :

Mars : H_{sw}^+ , H_{pl}^+ , O_2^+ , O_2^+ , CO_2^+

Plasma/neutral coupling taken into account self-consistently, distinction between the ionisation processes

- $\begin{array}{lll} \ Photoionisation & \Rightarrow & h_{V} + X \rightarrow X^{+} + e^{-} \\ \ Electronic \ impacts & \Rightarrow & X + e^{-} \rightarrow X^{+} + 2e^{-} \end{array}$
- Charge exchange reactions \implies $M^+ + X \rightarrow M + X^+$

Ionisation rates are not imposed but are computed locally from neutral densities and ionisation frequencies or cross sections

Mars / Solar Wind Interaction - Ingredients

□ Solar Wind: H⁺ et He⁺⁺ (5%), $n_{sw} \approx 1-3 \text{ cm}^{-3}$, $V_{sw} \approx 350-500 \text{ km/s}$

 \Box Exosphere / atmosphere : O, H et CO₂

□ Charged / neutral species coupling

- photoionisation et electronic impact ionisation
- charge exchanges
- no dissociation, only simple ionisation

□ Ionospheric chemistry

	Reactions	Rate coefficients	Column rate
1	$\operatorname{CO}_2 + h\nu \longrightarrow \operatorname{CO}_2^+ + e$	$\lambda < 902$ Å	$1.24e^{+10}$
2	$\mathrm{CO}_2 + h\nu \longrightarrow \mathrm{O}^+ + \mathrm{CO} + e$	$\lambda < 650 \ { m \AA}$	$1.09e^{+9}$
3	$\mathbf{O} + h\nu \longrightarrow \mathbf{O}^+ + e$	$\lambda < 911 ~\rm{\AA}$	$1.20e^{+8}$
4	$\mathbf{H} + h\nu \longrightarrow \mathbf{H}^+ + e$	$\lambda < 911 \ { m \AA}$	$1.00e^{+5}$
5	$\mathrm{CO}_2^+ + \mathrm{O} \longrightarrow \mathrm{O}_2^+ + \mathrm{CO}$	$1.64 e^{-10}$	$8.07 e^{+9}$
6	$\mathrm{CO}_2^+ + \mathrm{O} \longrightarrow \mathrm{O}^+ + \mathrm{CO}_2$	$9.6e^{-11}$	$4.72e^{+9}$
7	$O^+ + CO_2 \longrightarrow O_2^+ + CO$	$1.1e^{-9}$	$6.28e^{+9}$
8	$O_2^+ + e \longrightarrow O + O$	$7.38e^{-8}$	$1.36e^{+10}$
9	$\bar{\mathrm{CO}}_2^+ + e \longrightarrow \mathrm{CO} + \mathrm{O}$	$3.88 \mathrm{e}^{-7} (300/T_e)^{0.5}$	$7.52e^{+9}$

Coupling between neutral and charged species

- We fix the neutral density of the specie « X » in function of r $n_X \equiv n_X({\bm r})$

DPhotoionisation

- Production rate : $q_X^{photo}(\mathbf{r}) = n_X \cdot v_X^{photo}$ With $v_X = \int I_{\infty}(\lambda) \exp(-\tau(\mathbf{r}, \chi, \lambda)) \sigma_X(\lambda) d\lambda$

DElectronic impact ionization

- Production rate : $q_X^{impact}(\mathbf{r}) = n_X v_X^{impact}$ With $v_X^{impact} = \int_0^\infty v \sigma(v) f(v) 4\pi v^2 dv$

Charge exchange reactions

- Production rate : $q_X{}^{CE}(\textbf{r}) \propto n_X n_{SW}{}^{e}V_{SW}\sigma_{(X,M^+)}$

Simulation characteristics

Algorithm : Matthews A.P., JCP, 1994 Programming language : Fortran 77/90 Max memory used ~ 16 Go RAM \Rightarrow

- Parallel / sequential 55x10⁶ particles

More « realistical » simulations

□ Estimates the contribution of sputtering to the formation of the neutral corona and the oxygen escape

Minimum sol. Cond.

It underlined the difficulty of extrapolating the present measured loss rates to the past Mars' history without a better theroretical knowledge.

challenges

Akalin et al, Icarus, 2009

Formation of the MPB :

Max of magnetic field in MPR, without crustal field contribution :

-Observations (MGS, MeX/MARSIS) : 80-100 nT

-Simulations (hybrid) : 30-40 nT (max. when Δx)

Other discrepancy : no gradual increase of B seen in the simulation

Dist

UT

1.1

2030

1.6

2100

Dubinin et al, 2008b

Towards parallel computing

For each communicator : Definition of neighborhood process

Communications involve particle, electromagnetic field and moment informations

Particle administration

! On boucle sur le nombre d'information par particules a échanger do $\rm j=1,11$

! On compacte les particules que l'on va envoyer vers le nord

 $\label{eq:mask} \begin{array}{l} {\rm mask}(1:{\rm nptot}) = (({\rm particule}(3,1:{\rm nptot}) {>} {\rm zmax}).{\rm and}.(({\rm particule}(2,1:{\rm nptot}) {<} {=} {\rm ymin}) \\ \& \end{array}$

.and.(particule(2,1:nptot) <= ymax))).and.((particule(9,1:nptot)==0) & .and.((particule(1,1:nptot) >= xmin).and.(particule(1,1:nptot) <= xmax)))

 $p_out_N(j,1:np_out(N)) = pack(particule(j,1:nptot),mask(1:nptot))$ enddo

Moment collection : contribution of particles at the interface of 2 processes Boundary conditions.

10 15 20 25

0 5

10 15 20 25

0 5

10 15 20 25

0 5

Test – quiet plasma (SW + pick-up)

Conservation of particles in the simulation

Check interfaces values (for Bx here)